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A numerical  method is proposed for solving the following problems 
in the hydrodynamics of an ideal incompressible fluid with free bound- 
aries: the problem of constructing a profile from the pressure prescribed 
on it; the problem of constructing a cavern behind an arbitrary arc 
and then closing the cavern" by an artificial curve whose shape is not a 
priori known; and Ryabushinskii's [1] problem in the plane and axisym- 
metric cases. All two-dimensional problems for the upper half-plane 
are solved with allowance for gravitational force; Ryabushinskii's prob- 
lem for the axisymmetric case is solved with allowance for surface- 
tension forces. A solution to Ryabushinskii's two-dimensional problem 
with allowance for surface-tension and gravitational forces (for the 
upper half-plane) has been obtained in [2]. 

The algorithm for solving the aforesaid two-dimemional  problems 
is similar in many ways to the one proposed in [2]. It differs only in 
the method used for correcting the free boundary, which is of prime 
importance in the solution of problems of this type. Earlier publica-  
tions dealing with the numerical  solution of problems in hydrodynamics 
with free boundaries (see, for example,  [3, 4]), as a rule, lack a de- 
scription of free-boundary correction techniques. 

The advantage of numerical  methods of solving two-dimensional 
problems with free boundaries over analytical methods based on the 
apparatus of the theory of analytic functions is that numerical  methods 
can be applied without appreciable changes to analogous ax i symmet-  
ric and strictly three-dimensinnal  problems. As an example,  the cal-  
culation of Ryabushinskii's axisymmetric  problem is given in the final 
section of this paper. As distinct from Garabedian's [5] approximate 
method, the method proposed makes it possible to obtain a solution 
to this problem for a relatively wide class of "cavitator" configura- 
tions. 

J.. The method of solution is illustrated in detail by its application 
to the problem of constructing a plane profile from the pressure pre- 
scribed on it. This problem, without allowance for gravitational forces, 
has been solved by Mal'tsev [6]. In the following, we assume every- 
where a potential steady flow. In dimensionless form, the equations for 
such a flow are 

<~r o(p 04 oqD 
o~ ~ = - - v ~ ,  0-T ~ = ~ x  = V ~ '  (1.i) 
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where V0 and Po are the velocity and pressure of the oncoming flow 
along the x-axis; V and p are the velocity and pressure in the flow; g 
is the acceleration of the gravitational force directed along the z-axis; 
and S is a certain linear dimension. The cavitation number o is re- 
lated to the pressure P by the relationship o = -P~ where P~ is the pres- 
sure in the cavern. 

The solution of the problem is sought within the rectangle D formed 
(Fig. 1) by the x-axis,  the required profile, the straight lines C1, Ca 
(parallel to the z-axis at a distance 7, to either side of the origin of 
the coordinates), and the streamline C z that passes through the point 
(y, R). The values of the parameters 7 and R are obtained from the 
asymptotic form of the flow: the required profile is replaced by a c i r -  

cle of the same diameter,  and the parameters 7 and R are selected, 
such that the velocity component V x at the points (7, 0) and (0, R) differs 
from the velocity of the oncoming flow by a small  prescribed value. 
Neglecting this value, we have - �9 

V x = t ~a CI ,  Cz, C 3 .  (1.3) 

If the x-axis and the required profile are taken as the zero stream- 
line, then with the aid of the second equation in (1.1), condition (1.3) 
can be easily reduced to the form 

~b= z onC1, C 3 , ~ = B  on C2, ~ =  0 on C. (1.4) 

It is convenient to solve the problem in the auxiliary plane ~b, 
since in this plane the range of variation of the variables is known. The 
function z(x, ~) will be considered as the one to be determined. By 
changing to the variables x, ~, we get for z the following equation: 

aZxx - -  2bZxr "-1- cz+m = O, 

a = zr z, b =  zxzr c =  t + zx ~. (1.5) 

Expressed in terms of the function z(x, ~), the formula for the flow 
rate is 

V 2 _ t -Jr- zx2 
zr �9 (1 .6 )  

In this case, the region D becomes a rectangle w(--7 <- x _< 7, 0 _< 
_< ~ _< R). It should be noted that a singularity of the Jacobian of the 
transformation at the stagnation points of the flow affects the solution 
of the problem only in an insignificant region about these points. 

Thus, the problem reduces to the solution of Eq. (1.5) in the re-  
gion w for the following boundary conditions (Fig. 2) 

z = ,  on r (1.7) 
, t -+- zU-' 

, ~ ( x ) - l ~  ~+c~=o on r *  ( 1 . 8 )  

where P(x) is a given pressure. 
The algorithm for solving the problem consists in alternately inte-  

grating Eq. (1.5) for a fixed free boundary and the boundary conditions 
(1.7), and in converting the free boundary according to condition (1.8). 
Iteration is discontinued as soon as the required values and the flow 
characteristics cease to vary. Their l imiting value is taken as the solu- 
tion of the problem [2]. 

Integration of Eq. (1.5) is performed with the aid of fractional step 
schemes which provide complete approximation; an example is a scheme 
proposed by Douglas [7, 8]: 

T_ 1 ( : n + ' , ' _ ~  z n)  __ e [a '~Anz  n+'12 - -  (2 bnA  u - -  cnA~2) z n] ~, 

~-  ( t  - -  e) [ ( a n A n  - -  2 b n A n )  z n -~- cnA22zn+~h],  

x-l(z n+x - -  zn%'0 -- [eanA2~ -~ (1 - -  e)a n A n](z 'l+l - -  zn) ,  (1.9) 
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or the stabilizing operator scheme [7, 9,10] 

"~-1(E -- ~tTAn) (E --}x~A~) (:n~ z __ z ~) = (1.10) 

= (anAn - -  2 bnAr, -~- cnA~) z" . 

Here, Au, An, Az~ are central difference operators, and E is a uni- 
tary operator. The schemes are realized by three-point filtering in the 
x- and 0-directions. A ruled surface is taken as the initial integral sur- 
face 

where z*(x,0) is the equation for the initial zero streamline. 
The free surface is converted with the aid of the following finite- 

difference representation of the Bernoulli integral (1.8): 

i + (z~',) ~ -' ( p  - l + az)~:z~ (~zk+~ + z ~  _ ~z~) = 0, (1.12) 

P;: - P ( z ) x ( k ) ,  (1.13) 
Zi+lO - -  zi_10 

: x  - -  h i ~ -  h i+  1 , : v  = ~: i0  ~- rlziz-~-~zi~ 

: --  (n -~ ~), ~1 -- (lz -}- 12) / lzl2, ~ = - -  i / '1 12 ~.  (1.14) 

Here, h i is the step along the x-axis; l j is the step along the 0-axis; 
k is the profile correction number; and x(k) is a positive monotonically 
increasing function that satisfies the conditions 

X(0) : 0, lira x(k) -- i, for k -~ oo. 

Instead of the explicit scheme (1.12), an implicit scheme [2] 

t ~- :xkZx"~1 q- (P --  1 -[-G=)"~zJ~(~:/:~z-[ - -r ~ --  ~:'~) --  0 (1.15) 

can be applied to the correction of the profile, in which correction is 
achieved by once-through filtering of this relation along the free bound- 

ary. 
The computational procedure of the problem is as follows: setting 

z*(x, 0) = 0, Eq. (1.5) is integrated on the basis of scheme (1.9)or (1.10). 
Then, the first correction of the profile is performed either implicitly 
by formula (1.12), or by filtering according to scheme (1.15). This is 
followed by successively repeating the following computational cycle: 
integration of Eq. (1.5) on the basis of scheme (1.9) or (1.10) with 

boundary conditions (1.7) and the condition 

z : z:,(x, 0) on F*, (1.16) 

where zk~x, 0) is the profile equation after the k-th correction and the 
correction of the profile according to condition (1.8) as realized on 
the basis of (1.12) or (1.15). Calculations are discontinued after "sta- 

bilization." 
Integration of (1.5) (solution of the Dirichlet problem) need notbe 

complete--two or three iterations with respect to the parameter r are 
sufficient. Calculations were performed for following values of the 
problem parameters: r = 0.2, 7 = 1013, B = 2.5, R = 10. The function 
• was selected in the form 

�9 ;~ - -  i (1.17) 
X(k)-- ~. , v--i.o4. 

The grid in the plane (x, 0) is nonuniform; the grid in the ),-direction 
becomes increasingly dense toward the x-axis, the grid in the x-direc- 
tion becomes increasingly dense at the stagnation points of the flow 
and at the ends of a cavern in problems involving caverns.* 

The method was verified by calculating the following problem. We 
took an analytical solution, obtained by applying the "mirror" scheme 
[11, 12] to the problem of the cavitating flow of a weightless fluid past 
a wedge. On its basis, the pressure between the stagnation points was 

Fig. 3 
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calculated and was used to plot the profile. The geometry of the prob- 
lem was as follows (see Fig. 3): k = 1, /z = 0.2, o = 0.4. The calcula- 
t.ions (see Table 1) were performed twice, first with scheme (1.12) and 
then scheme (1.15) for correcting the profile. Discrepancies between 
the results were observed only in the fourth decimal place (the table 
gives the results obtained with the aid of scheme (1.12)). The last two 
columns in the table give the results obtained with allowance for a 
gravity force G = 0.1962. For S = 1 m, this corresponds to a velocity 
of 10 m/sec for the oncoming flow. 

Figure 4 shows the results of profile computations from an arbi- 
trarily given pressure (the pressure curve is plotted by hand on milli- 
meter graph paper) with and without allowance for the gravitational 
force. 

2. The problem of constructing a cavern ofprescribedlengthbehind 
an arbitrary arc can be solved in the same manner. The cavern is closed 
by means of an artificial curve whose shape is not given a priori. The 
problem is solved by the general scheme described. 

Let  W ( z ) ,  x ~ ( - -  8,  - -  ~) (Fig. 5) be the equation of the cavi- 
tator arc. We take the straight line between the points (--a ,  p) and 
(B', 0) as the initial profile. 

The free boundary (boundary of the cavern and closing curve) will 
be corrected by either scheme (1.12) or (1.15), evaluating 

p~c = pk _ i .  

from formula 

Q'~ = Q,k, z ~ ( - - a ,  ~'), ql, = q.k.v(z) ' z~(a ' ,~ ' ) ,  (2.1) 

[ , + z , 2  ]k 
Q*I:=__ Gz + z r 1 6 2  . . . .  +,~'  

z* = W ( - - a )  -]- h W ' ( - -  a ) .  (2.2) 

where h is the step on the x-axis, adjacent from the right to the point 

- a ;  z x and z 0 have the form (1.14); and Vx is a positive monotone 
function with a continuous derivative, for which 

v(~') = 1, ~(p') = 0. 

Condition (2.2) is the condition for smooth contact between the 
free surface and the cavitator, while (2.1) is the condition for con- 
stant pressure in the cavern. 

Figure 5 shows the shapes of the cavern and closing curve for two 
arcs (cavitators), an inclined straight line and an elliptic arc, respec- 
tively, 

w ( x )  = Ix(p + x) / (6 --  ~), 

w (~) = r~ l/(~ 2 --  x2) / (~ -- ~9.  

The following assumptions were made for the computations: 

v(x) = (V - x) / (8' - ~'), ~ = =" = 1.5, 

13 = 1~' = 2.5, tx = 0.5773. 

The free surface was corrected according to scheme (1.iS). The 
cavitation number o is equal to 0.8970 and 0.6969, respectively. The 
gravitational forces was neglected in the calculations. 

8. The problem of the cavitating flow of a heavy fluid near an 
arbitrary arc according to the mirror scheme (Ryabushinskii's problem) 
is a special case of the problem examined above. Figure 6 shows the 

*In test computations (Table 1), the grid in the x-direction is plotted 
from an anal~ical  solution. 
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Table 1 

0.0o0 
0.026 
0.080 
o.159 
0.261 
0.380 
0.506 
0.525 
0.724 
0.792 

Analytical solution 

z v 

0.2540 1.t832 
0.2540 1.1832 
0.2536 t.1832 
0.2523 1.1832 
0.2494 1.1q32 
0.2441 1.t832 
0.2360 1.t832 
0.2255 1.t832 
0.2142 1.t832 
0.2044 1.1832 

0.2518 
0.2517 
0.2513 
0.2501 
0.2~73 
0.2i23 
0.2347 
0.2250 
0.2t40 
0.2063 

Numerical solution 

V z 

t.t832 0.2242 
t.1832 0.2241 
1.1832 0.2233 
1.1832 0.2227 
1.1832 t)..221)2 
1.t832 (!.2157 
t.i832 0.2039 
1.1832 0.2CI01 
1.1q32 0.1903 
t.1832 0.1827 

0.817 
t.095 
t.303 
1.465 
t.592 
t.688 
t.758 
1.801 
t.817 
2.326 
3.383 
4.631 
5.952 
7.308 
8.682 

t0.067 

0.2000 
0.1444 
0.t027 
0.0703 
0.0450 
0.0257 
0.0119 
0.0032 
O.O000 

t.1832 
1.0t75 
0.9986 
0.9589 
0.9232 
0.8839 
0.8330 
0.76~2 
0.0900 
O.93% 
0.9779 
0.9391 
0.9933 
0.9955 
0.9970 
0.9978 

0.2319 
0.t423 
0.0994 
0.0662 
0.0404 
0.0297 
0.0060 
O.OO00 
0.0009 

t.t832 
1.0475 
0.9986 
0.9599 
0.9232 
0.8839 
0.83~0 
0.8149 
0.83S2 
0.9465 
0.9809 
0.9907 
0.9951 
0.9972 
0.9983 
0.9989 

0.1790 
0.1230 
0.0838 
0.0540 
0.03t3 
0.0146 
0.0030 
O.OOOO 
0.0000 

t.t644 
1.t644 
1.t645 
t.1645 
1.t648 
t.165t 
t.t657 
1.1665 
1.1673 
t.t679 
t.1682 
i.0359 
0.9904 
0.9543 
0.9199 
0.8823 
0.8357 
0.8473 
0.8677 
0.9544 
0.9828 
0.9920 
0.9958 
0.9976 
0.9985 
0.9991 

ztv 
f \V c 

- )  /.# - a  - 0 . 8  0 

Fig. 5 
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shape of the free surface obtained for the flow past a wedge and past 
an elliptic arc without allowance for a gravitational force. 

Two different flows past an elliptic arc were calculated with allow- 
ance for gravitational force. The results are compiled in Table 2. The 
case G --- 0.7848 for S = 1 m corresponds to an oncoming-flow velo- 
city of 5 m/see. The quantity H denotes the maximum cavern height. 

It should be noted that if the straight line z = R, and notthestream- 
line, is taken as C z (Fig. 1), for an arbitrary R we have a cavitating 
eham~el flow. For comparison, Fig. 7 shows the shapes of the free sur- 
face which develop in the cavitating flow past a wedge, according to 
the mirror scheme, in a half-plane (solid line) and in a ehannel (dashed 
line) with a width of 2R = 4. The cavitation number o is 0.9309 and 
/.9704, respectively. 

4. The numerical method developed for solving two-dimensional 
problems can be applied to the solution of analogous axisymmetric 
problems. Let us examine, for example, Ryabushinskii's problem for 
the axisymmetrie ease, with allowance for surface tension. 

In this case, instead of (1.1), (1.2), we have the following'equa - 
tions: 

o 4 oq~ o4 o~p 
O x  ~ - -  r ~ = - -  r V r ,  O r  - -  r - ~ x  = r g x  ' (4.1) 

P =  l - -  V s .  (4.2) 

If the cavern is assumed to be a shell of uniform strength, the 

conditions on it may be written as: 

(4.3) 
V 2 =  1 4 - 1 +  T(•247 

where T is the specific tension, and x i  and x z are the principal curva- 

tures of the cavern surface. 
Conditions (1.4) now take the form 

4 = 1/2r2 on G ,  C3, 4 = '/'~ R~ on C~, , = 0 on C (4.4) 

while in the equation for the function z(x, ~) = rZ(X, *) (see (1.5)), only 
the coefficient e undergoes a change, 

c = 4z + z~ 2 . (4.5) 

The flow rate is then expressed by the formula 

V ~ _ 4 z "q- Zx" (4.6) 
Z~4,2 

The problem reduces to the solution of Eq. (1.5) within the range 
w'(--y -< x ~ y, 0 < ~b _<R2/2) and the solution of (1.5) with allowance 
for (4.5), for the boundary conditions (Fig. 2) 

z = 24 on P, z = Fq ix) = Wq~(x) on Fq, q = 1,2. 14,7) 

Here, Wq(X) stands for the cavitator and closing-curve equations 
and conditions.(4.3) on F '. 

Eqs. (1.5), (4.5) are integrated using one of the fractional step 
schemes (1.9), (1.10), the initial integral surface being given by the 
formula 

z~ 4 ) = 2 ( l - - ~ ) , +  z~ O). (4.8) 

Here, z*(x, 0) = r*Z(x, 0), r~ 0) is the equation for the zero stream- 
line. The initial shape of the free boundary is taken in the form of the 
surface of revolution of a circular arc with the center on the r-axis, 
which has a smooth contact with the cavitator and closing curve. 

The free boundary is corrected by once-through filtering, along 
the boundary, of relation (4.3) written in the following form: 

4 z/;'1 4- zj'z:], l __ [z 4- t 4- 4T z~'Z -'- z (2 --  z~.~)]l: 

X (zz+)k (~z)~+l 4- zr __ ~z~) = O. (4.9) 

vc z ~v 
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Table 2 

G H V (0, H) o 

0.0000 
0.1962 
0.7848 

0.5740 
0.5705 
0.5612 

1.2368 
i.2328 
1.2225 

0.5297 
0.~3t8 
0.9349 

z. 4 ~,' 

/--- b' 

/?///" I L 32?5 

/ / /  z, -~ ! 

- 2 . ~  - f .  8 - ~ l  0 

Fig. 9 

v~ 
\ 

i 

-2. q -/. ~r -0. l 
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z~Y 
/ .3/7/  
I. 2388 
/ 

0.85,9// 
0,,r 
O..q 

0 

Here, z x and z~ have the form (1.14), while o k is evaluated from 
the formula (Fig. 8) 

~k :. 1 

:%.., (4z -;- FI"- (-- ~)) -- .',T :Z + z (2 --  z~x) ~ 
= ' (4z -:- z:~) ~ . . . . .  a+l~" 

Figure 8 gives the free surface and the velocity curve for cavita- 
tors in the form of a right cone with a cone angle of lr/3 and of an 
ellipsoid or revolution; ~ = i.5, 8 = 2.5 is taken in each case. Calcula- 
tions were performed without allowance for surface tension (T = 0). It 
was found that the influence of surface-tension forces that develop at 
the water-air interface on the flow characteristics is negligible at on- 
coming-flow velocities above 10 m/sec. 

Figure 9 gives a plot of the cavitation number o vs. the cavern 
half-length L for a right circular cone with a cone angle of 2 arctg (0.3) 
forB - - a = l .  

tZ#8 

Z 
0.04/ ~ I L 

O 2 r 6 

Fig. 9 
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